Problem 2

I. Answer the following questions on electric circuits. Here, s is a variable of the Laplace transform. Assume that $L_1 > M$ and $L_2 > M$ hold among the self inductances L_1 and L_2 , and the mutual inductance M. Symbols in the figures are defined in the legend.

- (1) As shown in Fig. 1, the currents $I_1(s)$ and $I_2(s)$ flow in two inductors with the self inductances L_1 and L_2 , respectively, and with the mutual inductance M. Find the self inductances L_{α} , L_{β} , and L_{γ} of the circuit in Fig. 2 that is equivalent to that in Fig. 1, using L_1 , L_2 , and M.
- (2) In the AC bridge circuit shown in Fig. 3 with the angular frequency ω , no current flows through the AC detector D. Find the self inductance L_2 and the mutual inductance M. You may use the resistances R_A , R_B , R_C , the self inductance L_1 , the capacitance C, and the angular frequency ω , if necessary.

The circuit in Fig. 4 contains the DC voltage source E, the two identical resistors R, and the capacitor C. Assume that $L_1 = L_2 = \sqrt{2}M$ holds in the following questions. The switch S had been opened for a sufficiently long time and then was closed at time t = 0. Dumped oscillations are observed at t > 0 in the currents flowing in the circuit.

- (3) Write the simultaneous equations that the currents $I_1(s)$, $I_2(s)$, and $I_3(s)$ satisfy at t > 0.
- (4) Find $I_3(s)$. It is not required to transform it to a time-domain form.
- (5) Find the range of capacitance C for generating the damped oscillation.

II. Answer the following questions on circuits using N-type MOS transistors. The symbols in the figures are defined in the legend. Use the circuit in Fig. 5 as a small-signal equivalent circuit for an N-type MOS transistor. Here, g_m and v_{GS} are the transconductance and the gate-to-source voltage, respectively.

- (1) Draw a small-signal equivalent circuit for the circuit in Fig. 6.
- (2) The circuit in Fig. 6 receives a small-signal AC input v_{in} , which is a complex voltage with angular frequency ω . Find the complex output voltage v_{out} .
- (3) Choose out of the following A and B a correct description regarding the characteristics of the circuit in Fig. 6. Briefly explain this reason. In addition, find the cutoff angular frequency of the circuit.
 - A. The circuit works as a low-pass filter.
 - B. The circuit works as a high-pass filter.

The circuit in Fig. 7 consists of the three circuits in Fig. 6. Oscillatory voltages occurred in this circuit. Here, the voltages in this circuit can be regarded as small signals.

- (4) Find the angular frequency of the oscillation.
- (5) Write the relation that the resistance $R_{\rm L}$ and the transconductance $g_{\rm m}$ satisfy for generating the oscillatory voltage.

Fig. 7